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Abstract: Cataract is the most common cause of preventable blindness and vision loss where
the only treatment is surgical replacement of the natural lens with an intraocular lens. Computer-
generated holography (CGH) enables to control phase, size, and shape of the light beam entering
through the eye-pupil. We developed a holographic vision simulator to assess visual acuity
for patients to experience the postoperative corrected vision before going through surgery. A
holographically shaped light beam is directed onto the retina using small non-cataractous regions
of the lens with the help of a pupil tracker. A Snellen chart hologram is shown to subjects
at desired depth with myopia and hyperopia correction. Tests with 13 patients demonstrated
substantial improvements in visual acuity and the simulator results are consistent with the
post-operative vision tests. Holographic simulator overperforms the existing vision simulators,
which are limited to static pinhole exit pupils and incapable of correcting aberrations.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Cataract is the world’s most common cause of reversible blindness and could lead to the complete
loss of vision if untreated [1]. As people age, the proteins in the lenses, that generally form a
transparent lattice start to unfold and agglomerate in clusters, developing a cloudy area that blocks,
scatters, and distorts light while passing through the lens. Although aging is the natural cause
of cataracts, chronic exposure to UV light can also trigger oxidative stress in the proteins that
compose the crystalline lens. Currently, more than 52 million people suffer from vision loss or
blindness caused by cataracts [2]. The earlier symptoms are quite unnoticeable, especially if both
eyes are affected. Continuous degradation of vision evolves gradually until the symptoms start to
manifest, including blurry vision, glare, halos, fading color, and night blindness, depending on
the type of the disease. There are several types of cataracts, including nuclear, cortical, posterior
subcapsular, and radiation [3]. Nuclear cataract forms in the center of the lens, often darkening
as it spreads, leading to hazy, blurry, or yellowed vision. Cortical cataract, on the other hand,
begins from the outer edges of the lens and spreads as wedge-like opacities growing centripetally,
forming an appearance of ‘spokes on a wheel. Posterior subcapsular cataracts form faster and are
more likely to occur in younger people when proteins settle at the back of the lens and begin to
form a hazy area. This involves a thin layer of clouding and protein clumps affecting the back
surface of the lens. Radiation cataract forms after exposure to radiation, either in a radioactive
area or after long-term exposure to UV radiation. Neither can be corrected with prescription
glasses and eventually lead to blindness if untreated.

The degree of cataract is quantified by the Lens Opacities Classification System III (LOCS
III), according to which the amount of cataract is defined and graded upon its nuclear color (NC),
nuclear opalescence (NO) cortical (C) and posterior subcapsular (P) components [4]. The VA
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of a healthy person is considered 20/20, where the first value indicates the distance (in feet) for
which a standard person can see, while the second value is the distance for which the subject
can see the same image. The World Health Organization (WHO) defines the stages of visual
impairments as follows: Mild (<20/40), moderate (<20/60), severe (<20/200), blind (<20/400)
[5].

Surgery is the only definitive treatment of cataracts. During surgery, the patient’s cataractous
lens is replaced with an artificial intraocular lens (IOL) [6]. It is crucial to match the patient
to the most suitable IOL since patients lose their ability to accommodate after the surgery due
to the rigid structure of the IOL [7]. A multiple choice of IOL types is available for patient
satisfaction, including monofocal IOLs for spherical refractive correction, bifocal or trifocal
IOLs for presbyopia correction, both with or without toric component to correct astigmatism.
Trifocal IOLs are the most demanding as they offer good vision at three different focal distances
simultaneously and eliminate the use of eyeglasses. Postoperative clinical tests such as visual
acuity and contrast sensitivity are used to assess surgical success; this evaluation is further
extended with additional tests that include distant corrected intermediate and near visual acuity,
and through-focus visual acuity to assess the performance of an implanted bifocal or trifocal
IOL. However, preoperative prediction of potential visual acuity following surgery remains a
challenge yet to overcome in clinical practice. Although numerous clinical methods and devices
such as pinhole testing [8] and Potential Acuity Meter [9] had been previously developed, none of
them had yet been proved to provide satisfactory results in predicting postoperative visual acuity
[10–12]. Therefore, a system that provides objective measurements for patients’ post-operative
condition after IOL replacement will be appealing and lead to better understanding of the problem
hence the treatment.

Augmented reality (AR) is a rapidly developing technology that enhances the real-world
environment by overlaying digital information on the objects or locations [13]. The advances in
AR combined with head-mounted displays (HMDs) and computer-generated holography (CGH)
offer unique and disruptive solutions that can be used for diagnosis, treatment, and follow-up
of several eye diseases, especially presbyopia, glaucoma, and age-related macular degeneration
[14]. On the other hand, cataract has not yet been sufficiently benefited by AR technology.
There are studies that simulate how patients with cataract perceive their surroundings via virtual
reality devices [15]; however, diagnosis or treatment is limited to adaptive optics only [16–18].
While off-the-shelf hardware is preferred widely among researchers, including AR-HMDs, some
researchers prefer to develop their optical structure for better customization and adaptation. These
displays can render the augmented image on top of real objects without covering the eyes with an
opaque screen, keeping the user’s natural field of view intact and their eyes unblocked [14]. These
displays integrate 3D virtual objects into the 3D physical environment, which would allow for new
visual enhancement possibilities for diagnosis, treatment, and visual aid for several ophthalmic
diseases. Especially, near-eye displays offer portable replacements for bulky, table-top designs
to provide ease of use and increase the accessibility of medical instruments throughout a wider
region [19].

Herein, we introduce a custom-made holographic vision simulator device for patients with
mild or severe cataracts to estimate postoperative visual acuity before surgery. The proposed
instrument is a wearable near-eye display integrated with a real-time pupil tracker and transmits
a holographic image (Snellen chart) through the patient’s pupil, as illustrated in Fig. 1. Our
novel eye box steering method allows us to scan over the pupil and find the non-cataractous
regions, if any, on the crystalline lens. The adjustable depth of holographic displays allows us to
accommodate the virtual image to the desired depth to correct the refractive error of the patient,
i.e., myopia or hyperopia. We first describe the concept of eye-box steering and refractive error
correction and how they apply to the ophthalmology setting. We then report patient examination
results and how the results are verified with conventional imaging methods.
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Fig. 1. a) Illustration of pupil-steering method over cataractous crystalline lens and b) image
forming on the retina.

2. Methods

2.1. Concept of eye-box steering

The ability to control the exit pupil location is an essential feature of holographic displays [20].
Exit pupil or eye-box steering is a technique that is commonly used by holographic near-eye
display architectures to overcome the fundamental trade between the field-of-view and eye-box
size. Therefore, there are techniques to enlarge the eye box by changing the focus using a dynamic
mirror [21] or by creating multiple focal spots using a holographic optical element [22]. All
the focus steering methods require either mechanical motion or fixed positions of the multiple
focal spots. On the other hand, CGH algorithms allow us to produce the effect of various optical
components on the display system by computationally embedding their wave shaping properties
in the objective wave calculation. Therefore, CGH remains as the only technology that provides
complete computational control over the exit-pupil (eye-box) size, location, and shape.

The full complex hologram can be calculated using the Fresnel Space Propagation [23] and a
phase-only hologram can be obtained using iterative Fourier transform algorithms [24]. Our
optical configuration is illustrated in Fig. 2(a), where the exit pupil corresponding to the generated
hologram can be placed between the 0th and the 1st diffraction orders. The horizontal and vertical
distances of the exit pupil in 2D from the 0th order location of each color can be determined by
solving the grating equation:

dx =
mxλf

a
, dy =

myλf
a

, (1)

where dx = dy = 5.25mm, a is the pixel pitch, mx and my are the diffraction order number in the
horizontal and vertical axis, λ is the wavelength, and f is the focal length of the lens in Fig. 2(a).
For placing the center of the hologram beam between the 0th and 1st diffraction orders, mx and
my can be any number between 0 and 1. For our display system, f is approximately 50mm, and
the pixel pitch of our phase-only spatial light modulator (SLM) is 4.5µm. for mx = my = 1, the
maximum value of dx = dy = 5.25mm. While using the Iterative Fourier Transform Algorithm
for phase hologram computation, we allocated about 5% of the area to phase noise; therefore, the
available region for the eye-box placement is ∼5-by-5mm.

In order to steer the eye-box anywhere in the square area between the 0th and 1st diffraction
orders in the 1st quadrant, we added a linear grating phase term in x and y-axis with periods
proportional to mx and my. A different value of m has to be calculated for the horizontal
and vertical axis and for each color. For blue wavelength (473nm), the exit pupil location
corresponding to mx = my = 0.5 is shown in Fig. 2(b). We divided the area into 5-by-5 subregions
to form 25 different exit pupils as shown in Fig. 2(c), where each exit pupil carries exactly the
same scene information. Individual eye-boxes separated with 0.2 mm. While multiple exit pupil
locations can be activated simultaneously, we activated only one of the exit pupils at a time and
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Fig. 2. a) Illustration of the exit-pupil location between the diffraction orders. b) Real
capture of single exit pupil in 473 nm. c) Real capture of all exit pupils simultaneously at all
wavelengths.

sequentially moved to each of the 25 exit pupil positions during the clinical trials in order to
utilize healthy sections of the patient’s cataractous pupil.

For different wavelengths, the required m value for pupil steering differs. We have calibrated
our experimental setup with respect to blue wavelength since it is the lowest wavelength and
defines our maximum steerable area. The desired diffracted order is in between m=0 and m=1
diffraction order for blue wavelength. The corresponding order for green and red are adjusted
accordingly. I.e., If desired order is at m=0.5 diffraction order for blue, it is m=∼0.4 for green
and m=∼0.3 for red. The grating pattern period is adjusted accordingly for each color hologram
to keep the wavelength to grating-period ratio constant.

Note that, when multiple exit pupils are activated simultaneously, one can also embed different
holograms containing different parallax of the scene into each exit pupil. While such an approach
can improve depth perception, it is not trivial as one has to also control the coherent interferences
between different exit pupil beams at the retina creating image artifacts.

2.2. Refractive error correction

The prevalence of refractive problems among patients raises difficulties to profile the clear spots
on the cataractous lens. It is imperative to eliminate the effect of the first-order aberrations caused
by the crystalline lens shape since these problems prevent our instrument from providing a sharp
virtual image for the patient [25]. The most common aberrations among refractive errors are
hyperopia (farsightedness), myopia (nearsightedness) and astigmatism.

Hyperopia and myopia are conditions that cause an image of an object to become unfocused
on the retina. Myopia is a condition in which, opposite of hyperopia, an image of a distant
object becomes focused in front of the retina [26]. These refractive errors can be corrected
with various prescription glasses or contact lenses specifically designed to counteract their
effects. Nearsightedness (myopia) is corrected using a concave lens which is placed in front of
a myopic eye, moving the image back to the retina and making it clearer. On the other hand,
long-sightedness (hyperopia) is corrected using a convex lens, which is placed in front of a
hypermetropic eye, moving the image forward and focusing it correctly on the retina. In other
words, the focal planes of the optical mediums are adjusted according to patients’ measured
diopter values of the refractive problems.

Our elimination procedure for hyperopia and myopia can be described as a graphical replication
of the effect of the prescribed eyeglasses. The near point of a human eye is the shortest object
distance that a healthy eye can accommodate or to image onto the retina. Depending on the
given age, the near point has a range from 20 cm to 67 cm for 40 and 55 years of age, which
could be estimated using the Hofstetter formula [27]. As described in the virtual scene creation
section under methods, the nearest depth plane is described as 25 cm for an ideal case, whereas
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the digital version of the Snellen chart is located at the farthest depth plane, which is located at
4 m. Depending on the refractive problem, these virtual depth planes are adjusted during our
plane discretization procedure of CGH calculation, as illustrated in Fig. 3. Depth values that are
retrieved from a rendering software are adjusted to replicate the patient’s prescribed eyeglasses
effect on these planes.

Fig. 3. Illustration of refractive error correction principle and real image of the hologram.

Since we use a pinhole-based display principle, the effect of refractive errors become smaller
as the aperture of the imaging system increases. However, the HVA improved when the refractive
correction was added to the hologram computation. For those patients with dense cataracts, their
refractive error cannot be measured. Therefore, we iterated the refractive correction until the best
HVA was obtained. We can subjectively assert that, those patients who required larger than 2D
correction, holographic refractive error correction helped improve the VA.

2.3. CGH calculation

CGHs are diffractive-optical elements that offer the possibility of creating wave-optical display
systems that are complete computer control [24]. Our CGH calculation involves four major
steps: content generation, focal plane discretization, object wave computation, and 3D image
reconstruction. The desired virtual content is formed, rendered perspective frames are discretized
into multiple focal planes with respect to their depth map values. Once the optical properties of
the system are defined, the next step computes the object wave of the scene planes with respect to
Fresnel Space Propagation. The complex-valued objects wave that are calculated to represent the
3D scene. The CGH system generally uses three methods for encoding: the amplitude holograms
where the amplitude of the reference wave that is modulated, phase holograms which modulate
its phase and complex holograms where both amplitude and phase are modulated. In order to
display the computed holograms on our phase-only SLM, complex valued hologram frames are
phase mapped using Iterative Fourier Transform Algorithm (IFTA) [14]. As a final step, once the
encoded CGH has been acquired to reproduce the 3D image of the scene, it can be displayed on a
beam shaping device that is explained in the optical setup section.

2.4. Optical setup

The head-worn vision simulator, as it is shown in Fig. 4 and Fig. 5, has a compact form due to its
simple optical architecture. The architecture for one eye module of the head-worn device consists
of a point light source, a phase-only SLM, optical components, exit pupil plane and pupil tracking
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cameras and a computation unit. The simulator utilizes a point light source that illuminates the
SLM. The operating wavelengths of the point light source are 473 nm for blue, 532 nm for green
and 632 nm for red color. Spatially coherent diverging beam that is generated by a point source
is collimated with a lens before illuminating the SLM. The light gets modulated via SLM. The
resolution of the SLM is FHD (1920× 1080 pixels) and the pixel pitch is 4.5 microns. SLM
provides phase-modulation with a frame rate of 180fps. SLM does not have a polarizer attached
to it. The input light is polarized but an analyzer is not needed after the SLM. The propagated
light rays reach the eye (pupil plane) once they are reflected from the beam splitter. This optical
architecture provides the correct ray angles from virtual objects that are encoded in the CGH
frames. The modulated waves that are reflected via beam splitter propagate and enter the eye
pupil to form the retinal image of the virtual object.

Fig. 4. Schematic of the optical setup. IR-camera is used for accurate pupil tracking,
whereas full-color camera is used for detecting the position of the hologram.

Fig. 5. (a) Front and (b) side view captures of the system.
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2.5. Pupil tracking

The pupil tracking cameras are placed in front of the beam splitter to align the patient pupil
with the exit pupil of the holographic head-worn unit. The pupil tracking system contains two
individual camera units: one visible range, one infrared (IR) range with IR LEDs. IR LEDs that
operate at 850 nm illuminate the pupil while the pupil tracking algorithm determines the location
and the center of the pupil from the frames captured via IR camera. The visible ranged camera
tracks diffraction orders that are formed on the pupil plane. Exit pupil (Eye-box) location is
estimated with respect to the 0th and 1st order diffraction locations.

2.6. Virtual scene

We have constructed a 3D scene via Game Engine, Blender 2.79. The virtual scene is formed by
two depth planes which provide the perspective and depth map data as raw rendered frames to
the CGH algorithm. To comply with the real eye examination scenario, a graphically constructed
Snellen chart is used for far-plane content whereas the near-plane only contains the surrounding
box of the Snellen chart. In this way, the patient experiences an illusion of the real eye examination
scenario. Far plane and near plane are formed at 400cm and 25cm respectively, as illustrated in
Fig. 3.

3. Results

3.1. Cataract screening

The proposed vision simulator instrument uses computer-generated holography to display the
virtual content, and it is binocular and head-worn, as illustrated in Fig. 3. The wearable feature of
the instrument eliminates the discomfort for the patients during the examination, and its pinhole
imaging feature and eye-box steering method provide novel capabilities that are not possible with
existing devices. The instrument also incorporates a pupil tracker and automatic algorithmic
adjustments using patient’s diagnostics data, reducing the measurement times, and making the
technology more accessible for patients. Once the device is aligned and the position is calibrated
with the aid of the pupil tracker cameras and inter-pupillary distance adjustments, multiple small
regions on the pupil were dynamically addressed, through which virtual images are sent to the
retina, granting a unique ability to make use of non-cataractous parts of the lens efficiently.

Our holographic vision system forms the exit pupil plane on the patient’s pupil. The overlapping
region of the exit pupil plane and the patient’s pupil is divided into 25 small regions (5-by-5
matrix). Each of these small regions is iteratively addressed to form the corresponding eye-box
locations. For each grid, a visual acuity test is performed by asking patients to read the Snellen
charts that are digitally provided to them.

The visual acuity tests that are performed through the clear regions that the vision simulator
acquired, is an indication of the maximum visual acuity level that can be achieved after the
cataract surgery.

3.2. Verification of results with Scheimpflug Cataract Densitometer

The results of the virtual eye examination yield a density map of the crystalline lens with a 5-by-5
resolution. Besides the fact that the patient is able to see the content clearly, the consistency
of this density map is verified by comparing the results with that of Scheimpflug cataract
densitometer (Sirius, CSO, Italy). Scheimpflug densitometry is one of the most common and
reliable instrument to examine the density profile of the lens [28]. As the density of the crystalline
lens varies on the pupil plane, spots with higher density indicate denser cloudy regions caused
by the cataractous lens. Figure 6 depicts the densitometry results of healthy and cataractous
eyes. The cloudy regions caused by cataracts can be differentiated when compared to the healthy
eye in Fig. 6(a). The black circular spot at the center of densitometer images is generated by



Research Article Vol. 12, No. 12 / 1 Dec 2021 / Biomedical Optics Express 7759

the device in all images and does not provide any information on lens features. However, the
other hypodense (dark regions) areas correspond to transparent zones of the lens whereas more
hyperdense (gray/white) regions correspond to zones with lens opacification. In Fig. 6(b)-(c) the
areas marked with red arrow are the transparent areas of the lens that coincide with the zones
through which holographic visual acuity results of Table 1 were obtained. We select these spots
as pinholes, through which we send the holographic stimulus focused on the retina.

Fig. 6. Scheimpflug cataract densitometry images of a) healthy subject (patient #13 OD) b)
patient with cataracts (patient #1 OD) and c) patient with cataracts (patient #7 OD). The
plots on the images show the density of cataracts on the lens. In b) and c) there are clear
spots on the lens, through which the patients can see the holographic image with 0.12 visual
acuity in logMAR scale.

3.3. Participant recruitment

13 subjects (ages 42–81), all recruited from the patients of Ophthalmology Clinic, Koç University
Hospital, and 10 healthy subjects (ages 18–60), all recruited from personnel at Koç University,
signed informed consent and participated in the current study. All healthy subjects had self-
reported normal vision, and their visual acuity was verified with both a Landolt C test and ETDRS
chart prior to the experiments. Our control group consisted of healthy individuals and had
excellent vision (Average BCVA was logMAR equivalent of “0” each having logMAR equivalent
of “0”). Their BCVA and HVA were consistent. As this group did not have surgery no change
from baseline was observed. The study was approved by the Koç University Ethics Committee
on human subject research and conducted according to the institutional guidelines, following the
tenets of the Declaration of Helsinki.

Patients who had been scheduled for unilateral or bilateral cataract surgery were recruited and
compared with a group of healthy subjects for the study. The enrolled patients underwent full
ophthalmologic examination including Best Corrected Visual Acuity (BCVA) from 4 meters,
slit lamp bio microscopy, applanation tonometry and dilated fundus examination. Patients who
had other ocular conditions including corneal opacities, glaucoma, ocular inflammation, diabetic
retinopathy, optic nerve abnormalities, retinal detachment and history of previous ocular surgery
were excluded. Intraocular lens (IOL) power prior cataract surgery was calculated with optical
low coherence reflectometry (Lenstar LS 900, Haag-Streit, Germany). A holographic vision
system based visual acuity testing (HVA) was performed, as described below. All surgeries were
performed by two experienced ophthalmic surgeons (M.H. and A.S.). Main corneal incision was
made with a 2.2 mm blade through the steep meridian. A 5.5 mm anterior capsular opening was
created with continuous curvilinear capsulorhexis. Following phacoemulsification procedure
(Centurion Vision System, Alcon Inc., Fort Worth, TX, USA), the Tecnis ICB00 monofocal
intraocular lens (Johnson & Johnson Surgical Vision, Inc.) was implanted into the capsular bag
in all patients. Moxifloxacin 0.5% and dexamethasone 0.1% eye drops were used 5 times per day
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Table 1. OD is the right eye, and OS is the left eye. BCVA is the best-corrected visual acuity, HVA is
holographic visual acuity with refractive error correction and PVA is the post operative visual acuity.
*: refractive error immeasurable due to severity of cataract. **: refractive notation includes spherical

power (D) - negative cylindrical power (D) × axis of cylinder (degrees)

Table 1. OD is the right eye, and OS is the left eye. BCVA is the best-corrected visual acuity, HVA is holographic 279 
visual acuity with refractive error correction and PVA is the post operative visual acuity. *: refractive error 280 
immeasurable due to severity of cataract. **: refractive notation includes spherical power (D) - negative 281 
cylindrical power (D) × axis of cylinder (degrees) 282 

Patient 
Number Sex Age Eye 

Refractive 
Error (in 
diopter) 

Cataract 
Type 

BCVA 
(logMAR) 

HVA 
(logMAR) 

PVA 
(logMAR) 

1 Female 42 OD -4.00 Nuclear 
Cortical >1.00 0.12 0 

2 Female 72 OD -* Nuclear >1.00 0.12 0.05 

3 Male 81 OD -* Cortical 1.00 0.12 0.05 

4 Female 55 OS -* Cataract 
(AMD) 1.00 1.00 0.70 

5 Female 56 OD +2.75 Cortical 0.70 0.12 0.05 

6 Female 75 OD +1.00 Cortical 0.70 0.0 0 

7 Female 65 
OD -2.25 -0.25 

x 110°**  Cortical 0.70 0.12 0 

OS -2.50 Cortical 0.40 0.0 0 

8 Female 70 OS +1.75 -1.75 
x 105°** Nuclear 0.40 0.12 0.05 

9 Male 68 
OD -* Nuclear 0.40 0.20 0.05 

OS -* Nuclear 0.40 0.20 0.05 

10 Male 74 OS -2.50 -0.50 
x 40°**  Nuclear 0.40 0.20 0 

11 Female 63 OD +2.50 Nuclear 0.22 0.0 0.05 

12 Male 57 
OS +2.50 -0.75 

x 160°**  None 0.22 0.12 0.05 

OD +2.25 None 0.15 0.00 0.05 

13 Female 57 OD +0.25 None 0.00 0.00 0 

 283 

3.2 Verification of results with Scheimpflug Cataract Densitometer 284 
The results of the virtual eye examination yield a density map of the crystalline lens with a 285 

5-by-5 resolution. Besides the fact that the patient is able to see the content clearly, the 286 
consistency of this density map is verified by comparing the results with that of Scheimpflug 287 
cataract densitometer (Sirius, CSO, Italy). Scheimpflug densitometry is one of the most 288 
common and reliable instrument to examine the density profile of the lens [28]. As the density 289 
of the crystalline lens varies on the pupil plane, spots with higher density indicate denser cloudy 290 
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following the surgery with tapering the doses for 3 weeks postoperatively. Preoperative ocular
examination and ancillary test procedures were repeated in postoperative follow-up visits in the
first and third months. All visual acuity tests including BCVA, HVA and the postoperative visual
acuity (PVA) from 4 meters were measured with Snellen charts.

4. Discussion

The results of the trials on patients suggest that the proposed vision simulator can be used
as a potential acuity meter so that the patients can experience corrected vision. Besides a
persuasive and assistive decision factor for the patients and the ophthalmologists towards cataract
surgery, the simulator can be used to detect those who will not benefit from IOL replacement and
provide a more guarded indication for surgery for cases who would likely present postoperative
complications due to other possible ocular and systemic conditions. This study reveals that low
visual acuity performances of the patients with cataracts may not be the effect of the cloudiness
of crystalline lenses only. Most of the patients that are suffering from cataracts tend to experience
additional eye-related problems, whether on the cornea or retina since cataracts often develop
in older age [29]. Since the cataractous lens does not allow to visualize the posterior segment
of the eye, it is unlikely to detect these diseases accurately. Having lens-related aberrations
results in a challenging situation where the ophthalmologist has to predict these major diseases.
These patients perform poorly on the HVA test; therefore, the low visual acuity in the virtual eye
examination indicates the existence of a retinal impairment. The proposed simulator enables
clinicians to measure the best possible visual acuity that can be obtained after the crystalline lens
is replaced. However, artifacts due to multifocal IOLs or any remaining refractive errors after the
surgery cannot be predicted with the simulator.

The clinical results demonstrate that all patients with cataracts have performed better in the
holographic visual acuity test compared to the conventional test, as shown in Fig. 7. However, it
can be seen that not every patient can experience perfect vision with the simulator. The reason
for this is the difference in the type and severity of cataracts of each patient. Depending on the
level of the disease, the less-affected regions in the lens may still be opaque, or there can be no
clarity in the lens at all. Even in these cases, the pinhole imaging method provides the patient a
better vision.

Fig. 7. Best corrected visual acuity (BCVA) (conventional method), holographic visual
acuity (HVA) (proposed method) obtained before the surgery and post visual acuity (PVA)
obtained after the surgery. Patient numbers are consistent with Table 1.

Some of the patients in the test group (patients 12 and 13) are scheduled for IOL replacement
to fix their refractive errors instead of cataracts. In these cases, the vision simulator cannot
overperform their current visual acuity. The reason for this is that the advantage of the holographic
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simulator is the pinhole imaging technique which is beneficial when most of the crystalline lens
is clouded. When the patient suffers from refractive errors with a clear lens, the simulator does
not make a major difference. For patients with cataracts, although some of the subjects’ BCVA
results have been dramatically increased in the HVA test. Patient 1 and Patient 2 had dense
cataracts and essentially had no vision on their cataractous eyes (BCVA > 1.00 logMAR). Our
simulator still predicted VA quite well despite the dense cataracts. On the other hand, some of
them do not experience the same level of improvement due to the nature of their cataract. For
instance, our test favors the patients with cortical cataractous lenses due to the inhomogeneous
density distribution of the crystalline lens. Whereas the nuclear cataract remains as a more
homogenous solution provides additional scattering issues while the imaging of the hologram
plane to the retina.

As previously mentioned, other retinal and corneal disorders such as AMD (patient 4),
glaucoma, or keratoconus introduce additional challenges during the imaging process which
cannot be overcome with pinhole imaging or aberration corrections. A major setback in HVA
tests is that patients with almost no vision have difficulties fixating their gaze to the hologram,
even with the help of the pupil trackers. This is usually the case with AMD patients, for they
are accustomed to seeing with their peripheral vision so that the center of their pupil is directed
downwards.

Previous efforts for preoperative prediction of visual performance are mainly focused on two
examination methods: Potential Acuity Meter (PAM), first introduced by Minkowski et al. in
1983, is an instrument which projects a visual acuity chart through a narrow beam of light using
a small section of the pupil [9]. The alignment of the light beam is adjusted by the doctor during
the examination, requires strong patient cooperation, performed when the pupil is dilated, and
the examination could take long for patients.

Potential Acuity Pinhole (PAP), introduced by Melki et al. in 1999, is a modification of the
traditional single point 1.2 mm pinhole examination with enhanced illumination [8]. PAP pinhole
is placed several mm in front of the pupil. Therefore, it has a small field-of-view. Patients
hold the pinhole in their hand and need to align and stabilize it relative to their pupils with mm
precision, which is a difficult task and limits the utility of the measurement. PAM also requires
strong user cooperation, and the test duration can also be long while the patient finds the less
dense regions of the cataracts and aligns it with the exit pupil of the device [10,12]. Although
being among the few reliable methods to assess potential visual acuity, both PAM and PAP had
shown limited capacity to predict clinically significant outcomes in patients with moderate to
advanced cataract, thus had very few benefits in common clinical practice [11].

Our system operation bears similarity to PAM in its operation principle. On the other hand,
our system employs a pupil tracker and can steer the exit pupil to the desired section of the pupil
in real-time using CGH algorithms. Furthermore, our system does not require pupil dilation,
utilizes coherent light, and is able to show dynamic images and change the refractive correction
dynamically based on the pupil position using algorithms.

Furthermore, both PAM and PAP methods rely on presenting a two-dimensional image with
increased depth of focus. On the other hand, holographic display technique has potential to
project simultaneous binocular views as well as three dimensional holograms that could introduce
a simulation of augmented reality involving both real-world environment and the 3D holographic
scene.

In summary, we have developed a near-eye display that uses CGH and forms a small exit
pupil where the size and the position of the exit pupil can be digitally controlled with algorithms.
It allows us to predict the PVA and the improvement compared to pre-op BCVA with good
accuracy. Our novel eye-box steering method enables us to scan the pupil of the patient to
find a non-cataractous region and then send the hologram through this region onto the retina.
In this way, not only the patients with cataracts will have the glimpse of the vision after the
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surgery, but also the retinal or corneal disorders, if any, will be detected. Although we were able
to perform holographic tests on a monocular setting, our device has potential to be upgraded
as a binocular testing system, which will further allow performing clinical tests that require
binocularity, including depth perception. The future work includes matching the patient to the
most suitable intraocular lens by adjustable depth feature of holography and eye-box steering
method introduced here.
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